1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
include <parameters.scad>
use <rail.scad>
use <hdd.scad>
// bend radius on hdd inlet
R = 2;
// size of the core box
W = hdd_width + vrail_width/2;
H = hdd_height + hrail_height;
// strap dimensions
SW=5;
SH=1.5;
// width of the SATA power cable (including some extra space for
// navigation)
spc_width=3;
support_bar_width = 10;
module front(capped_bottom=true) {
total_height = num_hdd_y*H + (capped_bottom ? 2 : hrail_height);
translate([0, 0, capped_bottom ? -(hrail_height/2 - 3) : -hrail_height/2])
intersection() {
union() {
translate([0, 0, 0*H])
tray(front_depth, inlet=[1]);
for (i = [1:num_hdd_y-1])
translate([0, 0, i*H])
tray(front_depth);
translate([0, 0, num_hdd_y*H])
tray(front_depth, inlet=[-1], rail=false);
}
translate([0, 0, num_hdd_y*H/2 + (capped_bottom ? (hrail_height/2 - 2) : 0)])
ccube([2*W, front_depth, total_height]);
}
}
module back() {
intersection() {
union() {
translate([0, 0, 0*H])
tray(back_depth, inlet=[1], power_hole=false);
for (i = [1:num_hdd_y-1])
translate([0, 0, i*H])
tray(back_depth, power_hole=false);
translate([0, 0, num_hdd_y*H])
tray(back_depth, inlet=[-1], rail=false, power_hole=false);
}
translate([0, 0, num_hdd_y*H/2])
ccube([2*W, front_depth, num_hdd_y*H + hrail_height]);
}
}
module ccube(x) cube(x, center=true);
module tray(D, power_hole=true, straps=true, inlet=[-1,1], rail=true, support_bar=true)
union() {
difference() {
union() {
// horizontal rail
ccube([hdd_width, D, hrail_height]);
// vertical rails
for (i = [-1,1])
translate([i*(W/2 - vrail_width/8), 0, 0])
ccube([vrail_width/4, D, H]);
}
// round corners for easy hdd insertion
for (i = inlet)
translate([0, 0, i*(hdd_height + hrail_height)/2])
hdd_inlet(D);
// notches to attach cable strap
if (straps) {
// horizontal strap holes
for (i = [-0.55, -0.18, 0.18, 0.55])
for (k = [-1, 1])
translate([i*hdd_width/2, 0, k*(hrail_height/2 - SH/2)])
strap_hole(D);
// vertical strap holes
for (i = [-1, 1])
translate([i * (hdd_width/2 + SH/2 - epsilon), 0, -hrail_height])
rotate([0, 90, 0])
strap_hole(D);
}
// hole for support bar
if (support_bar)
translate([0, D/4, 0])
ccube([W, D, support_bar_width]);
// hole to insert SATA power cables
if (power_hole)
translate([-hdd_width/2 + 15, 0, (support_bar_width - spc_width)/2 - 1.5]) {
translate([0, 0, 0])
ccube([5*spc_width, D, spc_width]);
translate([-2 * spc_width, 0, hrail_height/4])
ccube([spc_width, D, hrail_height/2]);
}
// space for rail
if (rail)
for (i = [0:1])
mirror([i, 0, 0])
translate([-hdd_width/2 - rail_thickness, -D, hrail_height/2 - rail_thickness])
rail();
// female side connectors
for (i = [-1,1])
connector_pos(D, i, -1);
}
// male side connectors
for (i = [-1,1])
connector_pos(D, i, 1);
}
module connector_pos(D, lr, gender)
translate([lr*(W/2 + vrail_width/4), -D/2, H*lr*gender*0.3])
connector();
module connector() {
connector_width = vrail_width - 2*(1 + rail_thickness);
intersection() {
translate([0, 2.5, 0]) ccube([connector_width, 5, 10]);
rotate([45, 0, 0]) ccube([connector_width, 5, 5]);
}
}
module strap_hole(D) {
ccube([SW, D, SH]);
}
module hdd_inlet(D)
render()
for (i = [0,1]) mirror([i, 0, 0])
for (j = [0,1]) mirror([0, j, 0])
for (k = [0,1]) mirror([0, 0, k])
difference() {
union() {
translate([0, D/2-R, 0])
cube([hdd_width/2 + R, D, hdd_height/2 + R]);
cube([hdd_width/2, D/2-R, hdd_height/2]);
};
translate([hdd_width/2 + R, D/2-R, 0])
rotate([0, 0, 0])
cylinder(r=R, h=H, center=true);
translate([0, D/2-R, hdd_height/2 + R])
rotate([0, 90, 0])
cylinder(r=R, h=W, center=true);
}
tray();
|