1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
#include <stdlib.h>
#include "fileutils.h"
#include "math.h"
#include "unistd.h"
#include "check_stdp_freq-dep.h"
#include "fileutils.cpp"
#include "model_switch.h"
using namespace std;
int main(int argc, char **argv) {
// check cmd line sanity
if (argc != 5) {
fprintf(stderr, "Wrong argument count\n\n"
"Call format:\n"
"%s\n\t"
"performance out\n\t"
"trace cmd out\n\t"
"global out\n\t"
"spike out\n\t"
"\n"
"Special names allowed:\n\t- (standart input)\n\t0 (/dev/null)\n", argv[0]);
return -1;
}
Trainer *t = new Trainer(argc, argv);
t->run();
pthread_join(t->thread_write, NULL);
}
Trainer::Trainer(int argc, char** argv) {
// init vars
currentEpoch = 0;
epochDuration = 10.0; // [s]
neurons = 1000; // number of neurons to send noise to
voltage = 0.1; // [V]
md = 1.2; // 10.0;
mss = 1.1; //1.2;
fs = 100; // number of frequencies to try
frd = 1.0; // relative difference between to frequencies (f_i+1 = frd * f_i)
fad = 0.5; // absolute difference between to frequencies (f_i+1 = fad + f_i)
// open all file descriptors in an order complementary to the simulators one
// to avoid deadlocks
fd_spike_out = fd_magic(argv[4], true);
fd_global_out = fd_magic(argv[3], true);
fd_performance_out = fd_magic(argv[1], true);
fd_trace_out = fd_magic(argv[2], true);
// create read and write threads
pthread_create(&thread_write, NULL, (void* (*)(void*)) &write_spikes, this);
}
void Trainer::run() {
char *str_trace = "%f; synapse\n";
// init global sim variables
MS_Global msg;
msg_init(msg);
msg.dopamin_level = 0.0;
double ta = 0.009821, //0.0088541,
la = 0.140249; // 0.126445;
/*
// loop over both vars to examine
for (msg.stdp_tau_plus = msg.stdp_tau_minus / md;
msg.stdp_tau_plus <= msg.stdp_tau_minus * md;
msg.stdp_tau_plus *= mss) {
for (msg.stdp_lambda_plus = msg.stdp_lambda_minus / md;
msg.stdp_lambda_plus <= msg.stdp_lambda_minus * md;
msg.stdp_lambda_plus *= mss) {*/
// loop over both vars to examine
for (msg.stdp_tau_plus = ta / md;
msg.stdp_tau_plus <= ta * md;
msg.stdp_tau_plus *= mss) {
for (msg.stdp_lambda_plus = la / md;
msg.stdp_lambda_plus <= la * md;
msg.stdp_lambda_plus *= mss) {
// print the parameters to the performance output
msg_print(msg, fd_performance_out);
fprintf(fd_performance_out, "\n");
// print the global params
fprintf(fd_global_out, "%f, ", currentEpoch * epochDuration);
msg_print(msg, fd_global_out);
fprintf(fd_global_out, "\n");
// let the simulation proceed
fprintf(fd_trace_out, str_trace, epochDuration);
currentEpoch++;
// repeat this 2*n-1 times (n=number of different frequency trials)
for (int i=0; i < 2*fs-1; i++) {
fprintf(fd_trace_out, "\n");
currentEpoch++;
}
}
}
fclose(fd_trace_out);
fclose(fd_global_out);
}
// ---- send indepenent poisson noise w/ increasing fequency----
void *write_spikes(Trainer *t) {
// calculate how often we have to try all frequencies (=outer loop)
// WARN: ignore minor numerical instabilities
int max = (int) floor(2.0 * log(t->md) / log(t->mss) ) + 1;
max *= max; // there are two nested loops of the same size
double time = 0.0; // global time (that one send to the simulator)
// for each paramter config (set in the main routine)
for (int i=0; i<max; i++) {
double freq = 1.0;
// examine a set of frequencies
for (int j=0; j < t->fs; j++) {
// send out the spikes
double localtime = 0.0;
double nextRefSpike = 0.0;
double refFreq = 10.0; // [Hz]
int dst = -1;
while (localtime < t->epochDuration) {
// starting with the second call ...
if (dst != -1) {
// check if we have to send a spike to the ref neuron
if (localtime > nextRefSpike) {
fprintf(t->fd_spike_out, "%f, %d, %f\n", time + nextRefSpike, 0, t->voltage);
nextRefSpike += 1.0 / refFreq;
}
// send spike to the simulator
fprintf(t->fd_spike_out, "%f, %d, %f\n", time + localtime, dst, t->voltage);
}else{
}
localtime -= log(1.0 - drand48()) / (freq * t->neurons); // possion distributed spike timing
dst = 1 + rand() % (t->neurons - 1); // random neuron (except reference neuron 0)
}
// increase time (twice because of the silence period after each noise period)
time = (i * t->fs + j) * 2.0 * t->epochDuration;
// increase frequency
freq *= t->frd;
freq += t->fad;
}
}
// close fd because fscanf sucks
fclose(t->fd_spike_out);
return NULL;
}
|