summaryrefslogtreecommitdiff
path: root/tests/yee_compare.cpp
blob: e135b9cfc1f94ed0977ba4df01ebe7cd25f01fc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

#include "yee_compare.h"
#include "lodepng.h"
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <math.h>

static const char* copyright = 
"PerceptualDiff version 1.1.1, Copyright (C) 2006 Yangli Hector Yee\n\
PerceptualDiff comes with ABSOLUTELY NO WARRANTY;\n\
This is free software, and you are welcome\n\
to redistribute it under certain conditions;\n\
See the GPL page for details: http://www.gnu.org/copyleft/gpl.html\n\n";

static const char *usage =
"PeceptualDiff image1.tif image2.tif\n\n\
   Compares image1.tif and image2.tif using a perceptually based image metric\n\
   Options:\n\
\t-verbose       : Turns on verbose mode\n\
\t-fov deg       : Field of view in degrees (0.1 to 89.9)\n\
\t-threshold p	 : #pixels p below which differences are ignored\n\
\t-gamma g       : Value to convert rgb into linear space (default 2.2)\n\
\t-luminance l   : White luminance (default 100.0 cdm^-2)\n\
\t-luminanceonly : Only consider luminance; ignore chroma (color) in the comparison\n\
\t-colorfactor   : How much of color to use, 0.0 to 1.0, 0.0 = ignore color.\n\
\t-downsample    : How many powers of two to down sample the image.\n\
\t-output o.ppm  : Write difference to the file o.ppm\n\
\n\
\n Note: Input or Output files can also be in the PNG or JPG format or any format\
\n that FreeImage supports.\
\n";

CompareArgs::CompareArgs()
{
	ImgA = NULL;
	ImgB = NULL;
	ImgDiff = NULL;
	Verbose = false;
	LuminanceOnly = false;
	FieldOfView = 45.0f;
	Gamma = 2.2f;
	ThresholdPixels = 100;
	Luminance = 100.0f;
   ColorFactor = 1.0f;
   DownSample = 0;
}

CompareArgs::~CompareArgs()
{
	if (ImgA) delete ImgA;
	if (ImgB) delete ImgB;
	if (ImgDiff) delete ImgDiff;
}

bool CompareArgs::Parse_Args(int argc, char **argv)
{
	if (argc < 3) {
		ErrorStr = copyright;
		ErrorStr += usage;
		return false;
	}
	int image_count = 0;
	const char* output_file_name = NULL;
	for (int i = 1; i < argc; i++) {
		if (strcmp(argv[i], "-fov") == 0) {
			if (++i < argc) {
				FieldOfView = (float) atof(argv[i]);
			}
		} else if (strcmp(argv[i], "-verbose") == 0) {
			Verbose = true;
		} else if (strcmp(argv[i], "-threshold") == 0) {
			if (++i < argc) {
				ThresholdPixels = atoi(argv[i]);
			}
		} else if (strcmp(argv[i], "-gamma") == 0) {
			if (++i < argc) {
				Gamma = (float) atof(argv[i]);
			}
		} else if (strcmp(argv[i], "-luminance") == 0) {
			if (++i < argc) {
				Luminance = (float) atof(argv[i]);
			}
		} else if (strcmp(argv[i], "-luminanceonly") == 0) {
			LuminanceOnly = true;
		} else if (strcmp(argv[i], "-colorfactor") == 0) {
			if (++i < argc) {
				ColorFactor = (float) atof(argv[i]);
			}
		} else if (strcmp(argv[i], "-downsample") == 0) {
			if (++i < argc) {
				DownSample = (int) atoi(argv[i]);
			}
		} else if (strcmp(argv[i], "-output") == 0) {
			if (++i < argc) {
				output_file_name = argv[i];
			}
		} else if (image_count < 2) {
			RGBAImage* img = RGBAImage::ReadFromFile(argv[i]);
			if (!img) {
				ErrorStr = "FAIL: Cannot open ";
				ErrorStr += argv[i];
				ErrorStr += "\n";
				return false;
			} else {
				++image_count;
				if(image_count == 1)
					ImgA = img;
				else
					ImgB = img;
			}
		} else {
			fprintf(stderr, "Warning: option/file \"%s\" ignored\n", argv[i]);
		}
	} // i
	if(!ImgA || !ImgB) {
		ErrorStr = "FAIL: Not enough image files specified\n";
		return false;
	}
   for (int i = 0; i < DownSample; i++) {
      if (Verbose) printf("Downsampling by %d\n", 1 << (i+1));
      RGBAImage *tmp = ImgA->DownSample();
      if (tmp) {
         delete ImgA;
         ImgA = tmp;
      }
      tmp = ImgB->DownSample();
      if (tmp) {
         delete ImgB;
         ImgB = tmp;
      }
   }
	if(output_file_name) {
		ImgDiff = new RGBAImage(ImgA->Get_Width(), ImgA->Get_Height(), output_file_name);
	}
	return true;
}

void CompareArgs::Print_Args()
{
	printf("Field of view is %f degrees\n", FieldOfView);
	printf("Threshold pixels is %d pixels\n", ThresholdPixels);
	printf("The Gamma is %f\n", Gamma);
	printf("The Display's luminance is %f candela per meter squared\n", Luminance);
}

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

LPyramid::LPyramid(float *image, int width, int height) :
	Width(width),
	Height(height)
{
	// Make the Laplacian pyramid by successively
	// copying the earlier levels and blurring them
	for (int i=0; i<MAX_PYR_LEVELS; i++) {
		if (i == 0) {
			Levels[i] = Copy(image);
		} else {
			Levels[i] = new float[Width * Height];
			Convolve(Levels[i], Levels[i - 1]);
		}
	}
}

LPyramid::~LPyramid()
{
	for (int i=0; i<MAX_PYR_LEVELS; i++) {
		if (Levels[i]) delete Levels[i];
	}
}

float *LPyramid::Copy(float *img)
{
	int max = Width * Height;
	float *out = new float[max];
	for (int i = 0; i < max; i++) out[i] = img[i];
	
	return out;
}

void LPyramid::Convolve(float *a, float *b)
// convolves image b with the filter kernel and stores it in a
{
	int y,x,i,j,nx,ny;
	const float Kernel[] = {0.05f, 0.25f, 0.4f, 0.25f, 0.05f};

	for (y=0; y<Height; y++) {
		for (x=0; x<Width; x++) {
			int index = y * Width + x;
			a[index] = 0.0f;
			for (i=-2; i<=2; i++) {
				for (j=-2; j<=2; j++) {
					nx=x+i;
					ny=y+j;
					if (nx<0) nx=-nx;
					if (ny<0) ny=-ny;
					if (nx>=Width) nx=2*Width-nx-1;
					if (ny>=Height) ny=2*Height-ny-1;
					a[index] += Kernel[i+2] * Kernel[j+2] * b[ny * Width + nx];
				} 
			}
		}
	}
}

float LPyramid::Get_Value(int x, int y, int level)
{
	int index = x + y * Width;
	int l = level;
	if (l > MAX_PYR_LEVELS) l = MAX_PYR_LEVELS;
	return Levels[level][index];
}



#ifndef M_PI
#define M_PI 3.14159265f
#endif

/*
* Given the adaptation luminance, this function returns the
* threshold of visibility in cd per m^2
* TVI means Threshold vs Intensity function
* This version comes from Ward Larson Siggraph 1997
*/ 

float tvi(float adaptation_luminance)
{
      // returns the threshold luminance given the adaptation luminance
      // units are candelas per meter squared

      float log_a, r, result; 
      log_a = log10f(adaptation_luminance);

      if (log_a < -3.94f) {
            r = -2.86f;
      } else if (log_a < -1.44f) {
            r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
      } else if (log_a < -0.0184f) {
            r = log_a - 0.395f;
      } else if (log_a < 1.9f) {
            r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
      } else {
            r = log_a - 1.255f;
      }

      result = powf(10.0f , r); 

      return result;

} 

// computes the contrast sensitivity function (Barten SPIE 1989)
// given the cycles per degree (cpd) and luminance (lum)
float csf(float cpd, float lum)
{
	float a, b, result; 
	
	a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
	b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
		
	result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd)); 
	
	return result;	
}

/*
* Visual Masking Function
* from Daly 1993
*/
float mask(float contrast)
{
      float a, b, result;
      a = powf(392.498f * contrast,  0.7f);
      b = powf(0.0153f * a, 4.0f);
      result = powf(1.0f + b, 0.25f); 

      return result;
} 

// convert Adobe RGB (1998) with reference white D65 to XYZ
void AdobeRGBToXYZ(float r, float g, float b, float &x, float &y, float &z)
{
	// matrix is from http://www.brucelindbloom.com/
	x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
	y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
	z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}

void XYZToLAB(float x, float y, float z, float &L, float &A, float &B)
{
	static float xw = -1;
	static float yw;
	static float zw;
	// reference white
	if (xw < 0) {
		AdobeRGBToXYZ(1, 1, 1, xw, yw, zw);
	}
	const float epsilon  = 216.0f / 24389.0f;
	const float kappa = 24389.0f / 27.0f;
	float f[3];
	float r[3];
	r[0] = x / xw;
	r[1] = y / yw;
	r[2] = z / zw;
	for (int i = 0; i < 3; i++) {
		if (r[i] > epsilon) {
			f[i] = powf(r[i], 1.0f / 3.0f);
		} else {
			f[i] = (kappa * r[i] + 16.0f) / 116.0f;
		}
	}
	L = 116.0f * f[1] - 16.0f;
	A = 500.0f * (f[0] - f[1]);
	B = 200.0f * (f[1] - f[2]);
}

bool Yee_Compare(CompareArgs &args)
{
	if ((args.ImgA->Get_Width() != args.ImgB->Get_Width()) ||
		(args.ImgA->Get_Height() != args.ImgB->Get_Height())) {
		args.ErrorStr = "Image dimensions do not match\n";
		return false;
	}
	
	unsigned int i, dim;
	dim = args.ImgA->Get_Width() * args.ImgA->Get_Height();
	bool identical = true;
	for (i = 0; i < dim; i++) {
		if (args.ImgA->Get(i) != args.ImgB->Get(i)) {
		  identical = false;
		  break;
		}
	}
	if (identical) {
		args.ErrorStr = "Images are binary identical\n";
		return true;
	}
	
	// assuming colorspaces are in Adobe RGB (1998) convert to XYZ
	float *aX = new float[dim];
	float *aY = new float[dim];
	float *aZ = new float[dim];
	float *bX = new float[dim];
	float *bY = new float[dim];
	float *bZ = new float[dim];
	float *aLum = new float[dim];
	float *bLum = new float[dim];
	
	float *aA = new float[dim];
	float *bA = new float[dim];
	float *aB = new float[dim];
	float *bB = new float[dim];

	if (args.Verbose) printf("Converting RGB to XYZ\n");
	
	unsigned int x, y, w, h;
	w = args.ImgA->Get_Width();
	h = args.ImgA->Get_Height();
	for (y = 0; y < h; y++) {
		for (x = 0; x < w; x++) {
			float r, g, b, l;
			i = x + y * w;
			r = powf(args.ImgA->Get_Red(i) / 255.0f, args.Gamma);
			g = powf(args.ImgA->Get_Green(i) / 255.0f, args.Gamma);
			b = powf(args.ImgA->Get_Blue(i) / 255.0f, args.Gamma);						
			AdobeRGBToXYZ(r,g,b,aX[i],aY[i],aZ[i]);			
			XYZToLAB(aX[i], aY[i], aZ[i], l, aA[i], aB[i]);
			r = powf(args.ImgB->Get_Red(i) / 255.0f, args.Gamma);
			g = powf(args.ImgB->Get_Green(i) / 255.0f, args.Gamma);
			b = powf(args.ImgB->Get_Blue(i) / 255.0f, args.Gamma);						
			AdobeRGBToXYZ(r,g,b,bX[i],bY[i],bZ[i]);
			XYZToLAB(bX[i], bY[i], bZ[i], l, bA[i], bB[i]);
			aLum[i] = aY[i] * args.Luminance;
			bLum[i] = bY[i] * args.Luminance;
		}
	}
	
	if (args.Verbose) printf("Constructing Laplacian Pyramids\n");
	
	LPyramid *la = new LPyramid(aLum, w, h);
	LPyramid *lb = new LPyramid(bLum, w, h);
	
	float num_one_degree_pixels = (float) (2 * tan( args.FieldOfView * 0.5 * M_PI / 180) * 180 / M_PI);
	float pixels_per_degree = w / num_one_degree_pixels;
	
	if (args.Verbose) printf("Performing test\n");
	
	float num_pixels = 1;
	unsigned int adaptation_level = 0;
	for (i = 0; i < MAX_PYR_LEVELS; i++) {
		adaptation_level = i;
		if (num_pixels > num_one_degree_pixels) break;
		num_pixels *= 2;
	}
	
	float cpd[MAX_PYR_LEVELS];
	cpd[0] = 0.5f * pixels_per_degree;
	for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
	float csf_max = csf(3.248f, 100.0f);
	
	float F_freq[MAX_PYR_LEVELS - 2];
	for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
	
	unsigned int pixels_failed = 0;
	for (y = 0; y < h; y++) {
	  for (x = 0; x < w; x++) {
		int index = x + y * w;
		float contrast[MAX_PYR_LEVELS - 2];
		float sum_contrast = 0;
		for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
			float n1 = fabsf(la->Get_Value(x,y,i) - la->Get_Value(x,y,i + 1));
			float n2 = fabsf(lb->Get_Value(x,y,i) - lb->Get_Value(x,y,i + 1));
			float numerator = (n1 > n2) ? n1 : n2;
			float d1 = fabsf(la->Get_Value(x,y,i+2));
			float d2 = fabsf(lb->Get_Value(x,y,i+2));
			float denominator = (d1 > d2) ? d1 : d2;
			if (denominator < 1e-5f) denominator = 1e-5f;
			contrast[i] = numerator / denominator;
			sum_contrast += contrast[i];
		}
		if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
		float F_mask[MAX_PYR_LEVELS - 2];
		float adapt = la->Get_Value(x,y,adaptation_level) + lb->Get_Value(x,y,adaptation_level);
		adapt *= 0.5f;
		if (adapt < 1e-5) adapt = 1e-5f;
		for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
			F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt)); 
		}
		float factor = 0;
		for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
			factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
		}
		if (factor < 1) factor = 1;
		if (factor > 10) factor = 10;
		float delta = fabsf(la->Get_Value(x,y,0) - lb->Get_Value(x,y,0));
		bool pass = true;
		// pure luminance test
		if (delta > factor * tvi(adapt)) {
			pass = false;
		} else if (!args.LuminanceOnly) {
			// CIE delta E test with modifications
                        float color_scale = args.ColorFactor;
			// ramp down the color test in scotopic regions
			if (adapt < 10.0f) {
                          // Don't do color test at all.
                          color_scale = 0.0;
			}
			float da = aA[index] - bA[index];
			float db = aB[index] - bB[index];
			da = da * da;
			db = db * db;
			float delta_e = (da + db) * color_scale;
			if (delta_e > factor) {
				pass = false;
			}
		}
		if (!pass) {
			pixels_failed++;
			if (args.ImgDiff) {
				args.ImgDiff->Set(255, 0, 0, 255, index);
			}
		} else {
			if (args.ImgDiff) {
				args.ImgDiff->Set(0, 0, 0, 255, index);
			}
		}
	  }
	}
	
	if (aX) delete[] aX;
	if (aY) delete[] aY;
	if (aZ) delete[] aZ;
	if (bX) delete[] bX;
	if (bY) delete[] bY;
	if (bZ) delete[] bZ;
	if (aLum) delete[] aLum;
	if (bLum) delete[] bLum;
	if (la) delete la;
	if (lb) delete lb;
	if (aA) delete aA;
	if (bA) delete bA;
	if (aB) delete aB;
	if (bB) delete bB;

	char different[100];
	sprintf(different, "%d pixels are different\n", pixels_failed);

        // Always output image difference if requested.
	if (args.ImgDiff) {
		if (args.ImgDiff->WriteToFile(args.ImgDiff->Get_Name().c_str())) {
			args.ErrorStr += "Wrote difference image to ";
			args.ErrorStr+= args.ImgDiff->Get_Name();
			args.ErrorStr += "\n";
		} else {
			args.ErrorStr += "Could not write difference image to ";
			args.ErrorStr+= args.ImgDiff->Get_Name();
			args.ErrorStr += "\n";
		}
	}

	if (pixels_failed < args.ThresholdPixels) {
		args.ErrorStr = "Images are perceptually indistinguishable\n";
                args.ErrorStr += different;
		return true;
	}
	
	args.ErrorStr = "Images are visibly different\n";
	args.ErrorStr += different;
	
	return false;
}

RGBAImage* RGBAImage::DownSample() const {
   if (Width <=1 || Height <=1) return NULL;
   int nw = Width / 2;
   int nh = Height / 2;
   RGBAImage* img = new RGBAImage(nw, nh, Name.c_str());
   for (int y = 0; y < nh; y++) {
      for (int x = 0; x < nw; x++) {
         int d[4];
         // Sample a 2x2 patch from the parent image.
         d[0] = Get(2 * x + 0, 2 * y + 0);
         d[1] = Get(2 * x + 1, 2 * y + 0);
         d[2] = Get(2 * x + 0, 2 * y + 1);
         d[3] = Get(2 * x + 1, 2 * y + 1);
         int rgba = 0;
         // Find the average color.
         for (int i = 0; i < 4; i++) {
            int c = (d[0] >> (8 * i)) & 0xFF;
            c += (d[1] >> (8 * i)) & 0xFF;
            c += (d[2] >> (8 * i)) & 0xFF;
            c += (d[3] >> (8 * i)) & 0xFF;
            c /= 4;
            rgba |= (c & 0xFF) << (8 * i);
         }
         img->Set(x, y, rgba);
      }
   }
   return img;
}


bool RGBAImage::WriteToFile(const char* filename)
{
	LodePNG::Encoder encoder;
	encoder.addText("Comment","lodepng");
	encoder.getSettings().zlibsettings.windowSize = 2048;
	

/*
	const FREE_IMAGE_FORMAT fileType = FreeImage_GetFIFFromFilename(filename);
	if(FIF_UNKNOWN == fileType)
	{
		printf("Can't save to unknown filetype %s\n", filename);
		return false;
	}

	FIBITMAP* bitmap = FreeImage_Allocate(Width, Height, 32, 0x000000ff, 0x0000ff00, 0x00ff0000);
	if(!bitmap)
	{
		printf("Failed to create freeimage for %s\n", filename);
		return false;
	}

	const unsigned int* source = Data;
	for( int y=0; y < Height; y++, source += Width )
	{
		unsigned int* scanline = (unsigned int*)FreeImage_GetScanLine(bitmap, Height - y - 1 );
		memcpy(scanline, source, sizeof(source[0]) * Width);
	}	
	
	FreeImage_SetTransparent(bitmap, false);
	FIBITMAP* converted = FreeImage_ConvertTo24Bits(bitmap);
	
	
	const bool result = !!FreeImage_Save(fileType, converted, filename);
	if(!result)
		printf("Failed to save to %s\n", filename);
	
	FreeImage_Unload(converted);
	FreeImage_Unload(bitmap);
	return result;
*/
	return true;
}

RGBAImage* RGBAImage::ReadFromFile(const char* filename)
{
  unsigned char* buffer;
  unsigned char* image;
  size_t buffersize, imagesize, i;
  LodePNG_Decoder decoder;
  
  LodePNG_loadFile(&buffer, &buffersize, filename); /*load the image file with given filename*/
  LodePNG_Decoder_init(&decoder);
  LodePNG_Decoder_decode(&decoder, &image, &imagesize, buffer, buffersize); /*decode the png*/
  
  /*load and decode*/
  /*if there's an error, display it, otherwise display information about the image*/
  if(decoder.error) printf("error %u: %s\n", decoder.error, LodePNG_error_text(decoder.error));

  int w = decoder.infoPng.width;
  int h = decoder.infoPng.height;
  

  RGBAImage* result = new RGBAImage(w, h, filename);
  // Copy the image over to our internal format, FreeImage has the scanlines bottom to top though.
  unsigned int* dest = result->Data;
  memcpy(dest, (void *)image, h*w*4);

  /*cleanup decoder*/
  free(image);
  free(buffer);
  LodePNG_Decoder_cleanup(&decoder);

  return result;
/*
	const FREE_IMAGE_FORMAT fileType = FreeImage_GetFileType(filename);
	if(FIF_UNKNOWN == fileType)
	{
		printf("Unknown filetype %s\n", filename);
		return 0;
	}
	
	FIBITMAP* freeImage = 0;
	if(FIBITMAP* temporary = FreeImage_Load(fileType, filename, 0))
	{
		freeImage = FreeImage_ConvertTo32Bits(temporary);
		FreeImage_Unload(temporary);
	}
	if(!freeImage)
	{
		printf( "Failed to load the image %s\n", filename);
		return 0;
	}

	const int w = FreeImage_GetWidth(freeImage);
	const int h = FreeImage_GetHeight(freeImage);

	RGBAImage* result = new RGBAImage(w, h, filename);
	// Copy the image over to our internal format, FreeImage has the scanlines bottom to top though.
	unsigned int* dest = result->Data;
	for( int y=0; y < h; y++, dest += w )
	{
		const unsigned int* scanline = (const unsigned int*)FreeImage_GetScanLine(freeImage, h - y - 1 );
		memcpy(dest, scanline, sizeof(dest[0]) * w);
	}	

	FreeImage_Unload(freeImage);
	return result;
	return NULL;
*/
}


int main(int argc, char **argv)
{
	CompareArgs args;
	
	if (!args.Parse_Args(argc, argv)) {
		printf("%s", args.ErrorStr.c_str());
		return -1;
	} else {
		if (args.Verbose) args.Print_Args();
	}
	
	const bool passed = Yee_Compare(args);
	if (passed) {
		if(args.Verbose)
			printf("PASS: %s\n", args.ErrorStr.c_str());
	} else {
		printf("FAIL: %s\n", args.ErrorStr.c_str());
	}

	return passed ? 0 : 1;
}

contact: Jan Huwald // Impressum