1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
#include "printutils.h"
#include "dxftess.h"
#include "dxfdata.h"
#include "polyset.h"
#include "grid.h"
#include "cgal.h"
#ifdef NDEBUG
#define PREV_NDEBUG NDEBUG
#undef NDEBUG
#endif
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Delaunay_mesher_no_edge_refinement_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_criteria_2.h>
#include <CGAL/Mesh_2/Face_badness.h>
#ifdef PREV_NDEBUG
#define NDEBUG PREV_NDEBUG
#endif
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Delaunay_mesh_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, Tds, CGAL::Exact_predicates_tag > CDT;
//typedef CGAL::Delaunay_mesh_criteria_2<CDT> Criteria;
typedef CDT::Vertex_handle Vertex_handle;
typedef CDT::Point CDTPoint;
#include <boost/unordered_map.hpp>
template <class T> class DummyCriteria {
public:
typedef double Quality;
class Is_bad {
public:
CGAL::Mesh_2::Face_badness operator()(const Quality) const {
return CGAL::Mesh_2::NOT_BAD;
}
CGAL::Mesh_2::Face_badness operator()(const typename T::Face_handle&, Quality&q) const {
q = 1;
return CGAL::Mesh_2::NOT_BAD;
}
};
Is_bad is_bad_object() const { return Is_bad(); }
};
struct triangle {
struct { double x, y; } p[3];
bool is_inner, is_marked;
};
struct point_info_t
{
double x, y;
int pathidx, pointidx;
int max_pointidx_in_path;
std::vector<int> triangles;
struct point_info_t *neigh_next;
struct point_info_t *neigh_prev;
point_info_t(double x, double y, int a, int b, int c) :
x(x), y(y), pathidx(a), pointidx(b), max_pointidx_in_path(c) { }
point_info_t() : x(0), y(0), pathidx(-1), pointidx(-1), max_pointidx_in_path(-1) { }
};
typedef std::pair<point_info_t*,point_info_t*> edge_t;
void mark_inner_outer(std::vector<struct triangle> &tri, Grid2d<point_info_t> &point_info,
boost::unordered_map<edge_t,int> &edge_to_triangle,
boost::unordered_map<edge_t,int> &edge_to_path, int idx, bool inner)
{
if (tri[idx].is_marked)
return;
tri[idx].is_inner = inner;
tri[idx].is_marked = true;
point_info_t *p[3] = {
&point_info.data(tri[idx].p[0].x, tri[idx].p[0].y),
&point_info.data(tri[idx].p[1].x, tri[idx].p[1].y),
&point_info.data(tri[idx].p[2].x, tri[idx].p[2].y)
};
edge_t edges[3] = {
edge_t(p[1], p[0]),
edge_t(p[2], p[1]),
edge_t(p[0], p[2])
};
for (int i = 0; i < 3; i++) {
if (edge_to_triangle.find(edges[i]) != edge_to_triangle.end()) {
bool next_inner = (edge_to_path.find(edges[i]) != edge_to_path.end()) ? !inner : inner;
mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path,
edge_to_triangle[edges[i]], next_inner);
}
}
}
void dxf_tesselate(PolySet *ps, DxfData &dxf, double rot, Vector2d scale, bool up, bool /* do_triangle_splitting */, double h)
{
CDT cdt;
std::vector<struct triangle> tri;
Grid2d<point_info_t> point_info(GRID_FINE);
boost::unordered_map<edge_t,int> edge_to_triangle;
boost::unordered_map<edge_t,int> edge_to_path;
int duplicate_vertices = 0;
CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION);
try {
// read path data and copy all relevant infos
for (size_t i = 0; i < dxf.paths.size(); i++)
{
if (!dxf.paths[i].is_closed)
continue;
Vertex_handle first, prev;
struct point_info_t *first_pi = NULL, *prev_pi = NULL;
for (size_t j = 1; j < dxf.paths[i].indices.size(); j++)
{
double x = dxf.points[dxf.paths[i].indices[j]][0];
double y = dxf.points[dxf.paths[i].indices[j]][1];
if (point_info.has(x, y)) {
// FIXME: How can the same path set contain the same point twice?
// ..maybe it would be better to assert here. But this would
// break compatibility with the glu tesselator that handled such
// cases just fine.
duplicate_vertices++;
continue;
}
struct point_info_t *pi = &point_info.align(x, y);
*pi = point_info_t(x, y, i, j, dxf.paths[i].indices.size()-1);
Vertex_handle vh = cdt.insert(CDTPoint(x, y));
if (first_pi == NULL) {
first_pi = pi;
first = vh;
} else {
prev_pi->neigh_next = pi;
pi->neigh_prev = prev_pi;
edge_to_path[edge_t(prev_pi, pi)] = 1;
edge_to_path[edge_t(pi, prev_pi)] = 1;
cdt.insert_constraint(prev, vh);
}
prev_pi = pi;
prev = vh;
}
if (first_pi != NULL && first_pi != prev_pi)
{
prev_pi->neigh_next = first_pi;
first_pi->neigh_prev = prev_pi;
edge_to_path[edge_t(first_pi, prev_pi)] = 1;
edge_to_path[edge_t(prev_pi, first_pi)] = 1;
cdt.insert_constraint(prev, first);
}
}
if ( duplicate_vertices > 0 ) {
PRINT( "WARNING: Duplicate vertices and/or intersecting lines found during DXF Tessellation." );
PRINT( "WARNING: Modify the polygon to be a Simple Polygon. Render is incomplete." );
}
}
catch (const CGAL::Assertion_exception &e) {
PRINTB("CGAL error in dxf_tesselate(): %s", e.what());
CGAL::set_error_behaviour(old_behaviour);
return;
}
CGAL::set_error_behaviour(old_behaviour);
// run delaunay triangulation
std::list<CDTPoint> list_of_seeds;
CGAL::refine_Delaunay_mesh_2_without_edge_refinement(cdt,
list_of_seeds.begin(), list_of_seeds.end(), DummyCriteria<CDT>());
// copy triangulation results
CDT::Finite_faces_iterator iter = cdt.finite_faces_begin();
for(; iter != cdt.finite_faces_end(); ++iter)
{
if (!iter->is_in_domain())
continue;
int idx = tri.size();
tri.push_back(triangle());
point_info_t *pi[3];
for (int i=0; i<3; i++) {
double px = iter->vertex(i)->point()[0];
double py = iter->vertex(i)->point()[1];
pi[i] = &point_info.align(px, py);
pi[i]->triangles.push_back(idx);
tri[idx].p[i].x = px;
tri[idx].p[i].y = py;
}
edge_to_triangle[edge_t(pi[0], pi[1])] = idx;
edge_to_triangle[edge_t(pi[1], pi[2])] = idx;
edge_to_triangle[edge_t(pi[2], pi[0])] = idx;
}
// mark trianlges as inner/outer
while (1)
{
double far_left_x = 0;
struct point_info_t *far_left_p = NULL;
for (size_t i = 0; i < tri.size(); i++)
{
if (tri[i].is_marked)
continue;
for (int j = 0; j < 3; j++) {
double x = tri[i].p[j].x;
double y = tri[i].p[j].y;
if (far_left_p == NULL || x < far_left_x) {
far_left_x = x;
far_left_p = &point_info.data(x, y);
}
}
}
if (far_left_p == NULL)
break;
// find one inner triangle and run recursive marking
for (size_t i = 0; i < far_left_p->triangles.size(); i++)
{
int idx = far_left_p->triangles[i];
if (tri[idx].is_marked)
continue;
point_info_t *p0 = &point_info.data(tri[idx].p[0].x, tri[idx].p[0].y);
point_info_t *p1 = &point_info.data(tri[idx].p[1].x, tri[idx].p[1].y);
point_info_t *p2 = &point_info.data(tri[idx].p[2].x, tri[idx].p[2].y);
point_info_t *mp = NULL, *np1 = NULL, *np2 = NULL, *tp = NULL;
if (p0 == far_left_p)
mp = p0, np1 = p1, np2 = p2;
else if (p1 == far_left_p)
mp = p1, np1 = p0, np2 = p2;
else if (p2 == far_left_p)
mp = p2, np1 = p0, np2 = p1;
else
continue;
if (mp->neigh_next == np2 || mp->neigh_prev == np1) {
point_info_t *t = np1;
np1 = np2;
np2 = t;
}
if (mp->neigh_next == np1 && mp->neigh_prev == np2) {
mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true);
goto found_and_marked_inner;
}
if (mp->neigh_next == np1)
tp = np2;
if (mp->neigh_prev == np2)
tp = np1;
if (tp != NULL) {
double z0 = (mp->neigh_next->x - mp->x) * (mp->neigh_prev->y - mp->y) -
(mp->neigh_prev->x - mp->x) * (mp->neigh_next->y - mp->y);
double z1 = (mp->neigh_next->x - mp->x) * (tp->y - mp->y) -
(tp->x - mp->x) * (mp->neigh_next->y - mp->y);
double z2 = (tp->x - mp->x) * (mp->neigh_prev->y - mp->y) -
(mp->neigh_prev->x - mp->x) * (tp->y - mp->y);
if ((z0 < 0 && z1 < 0 && z2 < 0) || (z0 > 0 && z1 > 0 && z2 > 0)) {
mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true);
goto found_and_marked_inner;
}
}
}
// far left point is in the middle of a vertical segment
// -> it is ok to use any unmarked triangle connected to this point
for (size_t i = 0; i < far_left_p->triangles.size(); i++)
{
int idx = far_left_p->triangles[i];
if (tri[idx].is_marked)
continue;
mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true);
break;
}
found_and_marked_inner:;
}
// add all inner triangles to target polyset
for(size_t i = 0; i < tri.size(); i++)
{
if (!tri[i].is_inner)
continue;
ps->append_poly();
int path[3], point[3];
for (int j=0;j<3;j++) {
int idx = up ? j : (2-j);
double px = tri[i].p[idx].x;
double py = tri[i].p[idx].y;
ps->append_vertex(scale[0] * (px * cos(rot*M_PI/180) + py * sin(rot*M_PI/180)),
scale[1] * (px * -sin(rot*M_PI/180) + py * cos(rot*M_PI/180)), h);
path[j] = point_info.data(px, py).pathidx;
point[j] = point_info.data(px, py).pointidx;
}
if (path[0] == path[1] && point[0] == 1 && point[1] == 2)
dxf.paths[path[0]].is_inner = up;
if (path[0] == path[1] && point[0] == 2 && point[1] == 1)
dxf.paths[path[0]].is_inner = !up;
if (path[1] == path[2] && point[1] == 1 && point[2] == 2)
dxf.paths[path[1]].is_inner = up;
if (path[1] == path[2] && point[1] == 2 && point[2] == 1)
dxf.paths[path[1]].is_inner = !up;
if (path[2] == path[0] && point[2] == 1 && point[0] == 2)
dxf.paths[path[2]].is_inner = up;
if (path[2] == path[0] && point[2] == 2 && point[0] == 1)
dxf.paths[path[2]].is_inner = !up;
}
}
/* Tessellation of 3d PolySet faces
This code is for tessellating the faces of a 3d PolySet, assuming that
the faces are near-planar polygons.
We do the tessellation by projecting each polygon of the Polyset onto a
2-d plane, then running a 2d tessellation algorithm on the projected 2d
polygon. Then we project each of the newly generated 2d 'tiles' (the
polygons used for tessellation, typically triangles) back up into 3d
space.
(in reality as of writing, we dont need to do a back-projection from 2d->3d
because the algorithm we are using doesn't create any new points, and we can
just use a 'map' to associate 3d points with 2d points).
The code assumes the input polygons are simple, non-intersecting, without
holes, without duplicate input points, and with proper orientation.
The purpose of this code is originally to fix github issue 349. Our CGAL
kernel does not accept polygons for Nef_Polyhedron_3 if each of the
points is not exactly coplanar. "Near-planar" or "Almost planar" polygons
often occur due to rounding issues on, for example, polyhedron() input.
By tessellating the 3d polygon into individual smaller tiles that
are perfectly coplanar (triangles, for example), we can get CGAL to accept
the polyhedron() input.
*/
typedef enum { XYPLANE, YZPLANE, XZPLANE, NONE } projection_t;
// this is how we make 3d points appear as though they were 2d points to
//the tessellation algorithm.
Vector2d get_projected_point( Vector3d v, projection_t projection ) {
Vector2d v2(0,0);
if (projection==XYPLANE) { v2.x() = v.x(); v2.y() = v.y(); }
else if (projection==XZPLANE) { v2.x() = v.x(); v2.y() = v.z(); }
else if (projection==YZPLANE) { v2.x() = v.y(); v2.y() = v.z(); }
return v2;
}
CGAL_Point_3 cgp( Vector3d v ) { return CGAL_Point_3( v.x(), v.y(), v.z() ); }
/* Find a 'good' 2d projection for a given 3d polygon. the XY, YZ, or XZ
plane. This is needed because near-planar polygons in 3d can have 'bad'
projections into 2d. For example if the square 0,0,0 0,1,0 0,1,1 0,0,1
is projected onto the XY plane you will not get a polygon, you wil get
a skinny line thing. It's better to project that square onto the yz
plane.*/
projection_t find_good_projection( PolySet::Polygon pgon ) {
// step 1 - find 3 non-collinear points in the input
if (pgon.size()<3) return NONE;
Vector3d v1,v2,v3;
v1 = v2 = v3 = pgon[0];
for (size_t i=0;i<pgon.size();i++) {
if (pgon[i]!=v1) { v2=pgon[i]; break; }
}
if (v1==v2) return NONE;
for (size_t i=0;i<pgon.size();i++) {
if (!CGAL::collinear( cgp(v1), cgp(v2), cgp(pgon[i]) )) {
v3=pgon[i]; break;
}
}
if (CGAL::collinear( cgp(v1), cgp(v2), cgp(v3) ) ) return NONE;
// step 2 - find which direction is best for projection. planes use
// the equation ax+by+cz+d = 0. a,b, and c determine the direction the
// plane is in. we want to find which projection of the 'normal vector'
// would make the smallest shadow if projected onto the XY, YZ, or XZ
// plane. 'quadrance' (distance squared) can tell this w/o using sqrt.
CGAL::Plane_3<CGAL_Kernel3> pl( cgp(v1), cgp(v2), cgp(v3) );
NT3 qxy = pl.a()*pl.a()+pl.b()*pl.b();
NT3 qyz = pl.b()*pl.b()+pl.c()*pl.c();
NT3 qxz = pl.c()*pl.c()+pl.a()*pl.a();
NT3 min = std::min(qxy,std::min(qyz,qxz));
if (min==qxy) return XYPLANE;
else if (min==qyz) return YZPLANE;
return XZPLANE;
}
/* triangulate the given 3d polygon using CGAL's 2d Constrained Delaunay
algorithm. Project the polygon's points into 2d using the given projection
before performing the triangulation. This code assumes input polygon is
simple, no holes, no self-intersections, no duplicate points, and is
properly oriented. output is a sequence of 3d triangles. */
bool triangulate_polygon( const PolySet::Polygon &pgon, std::vector<PolySet::Polygon> &triangles, projection_t projection )
{
bool err = false;
CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION);
try {
CDT cdt;
std::vector<Vertex_handle> vhandles;
std::map<CDTPoint,Vector3d> vertmap;
CGAL::Orientation original_orientation;
std::vector<CDTPoint> orienpgon;
for (size_t i = 0; i < pgon.size(); i++) {
Vector3d v3 = pgon.at(i);
Vector2d v2 = get_projected_point( v3, projection );
CDTPoint cdtpoint = CDTPoint(v2.x(),v2.y());
vertmap[ cdtpoint ] = v3;
Vertex_handle vh = cdt.insert( cdtpoint );
vhandles.push_back(vh);
orienpgon.push_back( cdtpoint );
}
original_orientation = CGAL::orientation_2( orienpgon.begin(),orienpgon.end() );
for (size_t i = 0; i < vhandles.size(); i++ ) {
int vindex1 = (i+0);
int vindex2 = (i+1)%vhandles.size();
cdt.insert_constraint( vhandles[vindex1], vhandles[vindex2] );
}
std::list<CDTPoint> list_of_seeds;
CGAL::refine_Delaunay_mesh_2_without_edge_refinement(cdt,
list_of_seeds.begin(), list_of_seeds.end(), DummyCriteria<CDT>());
CDT::Finite_faces_iterator fit;
for( fit=cdt.finite_faces_begin(); fit!=cdt.finite_faces_end(); fit++ )
{
if(fit->is_in_domain()) {
CDTPoint p1 = cdt.triangle( fit )[0];
CDTPoint p2 = cdt.triangle( fit )[1];
CDTPoint p3 = cdt.triangle( fit )[2];
Vector3d v1 = vertmap[p1];
Vector3d v2 = vertmap[p2];
Vector3d v3 = vertmap[p3];
PolySet::Polygon pgon;
if (CGAL::orientation(p1,p2,p3)==original_orientation) {
pgon.push_back(v1);
pgon.push_back(v2);
pgon.push_back(v3);
} else {
pgon.push_back(v3);
pgon.push_back(v2);
pgon.push_back(v1);
}
triangles.push_back( pgon );
}
}
} catch (const CGAL::Failure_exception &e) {
PRINTB("CGAL error in dxftess triangulate_polygon: %s", e.what());
err = true;
}
CGAL::set_error_behaviour(old_behaviour);
return err;
}
/* Given a 3d PolySet with 'near planar' polygonal faces, Tessellate the
faces. As of writing, our only tessellation method is Triangulation
using CGAL's Constrained Delaunay algorithm. This code assumes the input
polyset has simple polygon faces with no holes, no self intersections, no
duplicate points, and proper orientation. */
void tessellate_3d_faces( const PolySet &inps, PolySet &outps ) {
for (size_t i = 0; i < inps.polygons.size(); i++) {
const PolySet::Polygon pgon = inps.polygons[i];
if (pgon.size()<3) {
PRINT("WARNING: PolySet has polygon with <3 points");
continue;
}
projection_t goodproj = find_good_projection( pgon );
if (goodproj==NONE) {
PRINT("WARNING: PolySet has degenerate polygon");
continue;
}
std::vector<PolySet::Polygon> triangles;
bool err = triangulate_polygon( pgon, triangles, goodproj );
if (!err) for (size_t j=0;j<triangles.size();j++) {
PolySet::Polygon t = triangles[j];
outps.append_poly();
outps.append_vertex(t[0].x(),t[0].y(),t[0].z());
outps.append_vertex(t[1].x(),t[1].y(),t[1].z());
outps.append_vertex(t[2].x(),t[2].y(),t[2].z());
}
}
}
// End of PolySet face tessellation code
|