1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* OpenSCAD (www.openscad.at)
* Copyright (C) 2009 Clifford Wolf <clifford@clifford.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifdef WIN32
# define STDCALL __stdcall
#else
# define STDCALL
#endif
#define INCLUDE_ABSTRACT_NODE_DETAILS
#include "openscad.h"
#include "printutils.h"
#undef DEBUG_TRIANGLE_SPLITTING
struct tess_vdata {
GLdouble v[3];
};
struct tess_triangle {
GLdouble *p[3];
tess_triangle() { p[0] = NULL; p[1] = NULL; p[2] = NULL; }
tess_triangle(double *p1, double *p2, double *p3) { p[0] = p1; p[1] = p2; p[2] = p3; }
};
static GLenum tess_type;
static int tess_count;
static QVector<tess_triangle> tess_tri;
static GLdouble *tess_p1, *tess_p2;
static void STDCALL tess_vertex(void *vertex_data)
{
GLdouble *p = (double*)vertex_data;
#if 0
printf(" %d: %f %f %f\n", tess_count, p[0], p[1], p[2]);
#endif
if (tess_type == GL_TRIANGLE_FAN) {
if (tess_count == 0) {
tess_p1 = p;
}
if (tess_count == 1) {
tess_p2 = p;
}
if (tess_count > 1) {
tess_tri.append(tess_triangle(tess_p1, tess_p2, p));
tess_p2 = p;
}
}
if (tess_type == GL_TRIANGLE_STRIP) {
if (tess_count == 0) {
tess_p1 = p;
}
if (tess_count == 1) {
tess_p2 = p;
}
if (tess_count > 1) {
if (tess_count % 2 == 1) {
tess_tri.append(tess_triangle(tess_p2, tess_p1, p));
} else {
tess_tri.append(tess_triangle(tess_p1, tess_p2, p));
}
tess_p1 = tess_p2;
tess_p2 = p;
}
}
if (tess_type == GL_TRIANGLES) {
if (tess_count == 0) {
tess_p1 = p;
}
if (tess_count == 1) {
tess_p2 = p;
}
if (tess_count == 2) {
tess_tri.append(tess_triangle(tess_p1, tess_p2, p));
tess_count = -1;
}
}
tess_count++;
}
static void STDCALL tess_begin(GLenum type)
{
#if 0
if (type == GL_TRIANGLE_FAN) {
printf("GL_TRIANGLE_FAN:\n");
}
if (type == GL_TRIANGLE_STRIP) {
printf("GL_TRIANGLE_STRIP:\n");
}
if (type == GL_TRIANGLES) {
printf("GL_TRIANGLES:\n");
}
#endif
tess_count = 0;
tess_type = type;
}
static void STDCALL tess_end(void)
{
/* nothing to be done here */
}
static void STDCALL tess_error(GLenum errno)
{
PRINTF("GLU tesselation error %d!", errno);
}
static bool point_on_line(double *p1, double *p2, double *p3)
{
if (fabs(p1[0] - p2[0]) < 0.00001 && fabs(p1[1] - p2[1]) < 0.00001)
return false;
if (fabs(p3[0] - p2[0]) < 0.00001 && fabs(p3[1] - p2[1]) < 0.00001)
return false;
double v1[2] = { p2[0] - p1[0], p2[1] - p1[1] };
double v2[2] = { p3[0] - p1[0], p3[1] - p1[1] };
if (sqrt(v1[0]*v1[0] + v1[1]*v1[1]) > sqrt(v2[0]*v2[0] + v2[1]*v2[1]))
return false;
if (fabs(v1[0]) > fabs(v1[1])) {
// y = x * dy/dx
if (v2[0] == 0 || ((v1[0] > 0) != (v2[0] > 0)))
return false;
double v1_dy_dx = v1[1] / v1[0];
double v2_dy_dx = v2[1] / v2[0];
if (fabs(v1_dy_dx - v2_dy_dx) > 1e-15)
return false;
} else {
// x = y * dx/dy
if (v2[1] == 0 || ((v1[1] > 0) != (v2[1] > 0)))
return false;
double v1_dy_dx = v1[0] / v1[1];
double v2_dy_dx = v2[0] / v2[1];
if (fabs(v1_dy_dx - v2_dy_dx) > 1e-15)
return false;
}
#if 0
printf("Point on line: %f/%f %f/%f %f/%f\n", p1[0], p1[1], p2[0], p2[1], p3[0], p3[1]);
#endif
return true;
}
void dxf_tesselate(PolySet *ps, DxfData *dxf, double rot, bool up, double h)
{
GLUtesselator *tobj = gluNewTess();
gluTessCallback(tobj, GLU_TESS_VERTEX, (void(STDCALL *)())&tess_vertex);
gluTessCallback(tobj, GLU_TESS_BEGIN, (void(STDCALL *)())&tess_begin);
gluTessCallback(tobj, GLU_TESS_END, (void(STDCALL *)())&tess_end);
gluTessCallback(tobj, GLU_TESS_ERROR, (void(STDCALL *)())&tess_error);
tess_tri.clear();
QList<tess_vdata> vl;
gluTessBeginPolygon(tobj, NULL);
gluTessProperty(tobj, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_ODD);
if (up) {
gluTessNormal(tobj, 0, 0, -1);
} else {
gluTessNormal(tobj, 0, 0, +1);
}
Grid3d< QPair<int,int> > point_to_path;
for (int i = 0; i < dxf->paths.count(); i++) {
if (!dxf->paths[i].is_closed)
continue;
gluTessBeginContour(tobj);
for (int j = 1; j < dxf->paths[i].points.count(); j++) {
point_to_path.data(dxf->paths[i].points[j]->x,
dxf->paths[i].points[j]->y,
h) = QPair<int,int>(i, j);
vl.append(tess_vdata());
vl.last().v[0] = dxf->paths[i].points[j]->x;
vl.last().v[1] = dxf->paths[i].points[j]->y;
vl.last().v[2] = h;
gluTessVertex(tobj, vl.last().v, vl.last().v);
}
gluTessEndContour(tobj);
}
gluTessEndPolygon(tobj);
gluDeleteTess(tobj);
#if 0
for (int i = 0; i < tess_tri.count(); i++) {
printf("~~~\n");
printf(" %f %f %f\n", tess_tri[i].p[0][0], tess_tri[i].p[0][1], tess_tri[i].p[0][2]);
printf(" %f %f %f\n", tess_tri[i].p[1][0], tess_tri[i].p[1][1], tess_tri[i].p[1][2]);
printf(" %f %f %f\n", tess_tri[i].p[2][0], tess_tri[i].p[2][1], tess_tri[i].p[2][2]);
}
#endif
// GLU tessing sometimes generates degenerated triangles. We must find and remove
// them so we can use the triangle array with CGAL..
for (int i = 0; i < tess_tri.count(); i++) {
if (point_on_line(tess_tri[i].p[0], tess_tri[i].p[1], tess_tri[i].p[2]) ||
point_on_line(tess_tri[i].p[1], tess_tri[i].p[2], tess_tri[i].p[0]) ||
point_on_line(tess_tri[i].p[2], tess_tri[i].p[0], tess_tri[i].p[1])) {
tess_tri.remove(i--);
}
}
// GLU tessing creates T-junctions. This is ok for GL displaying but creates
// invalid polyhedrons for CGAL. So we split this tirangles up again in order
// to create polyhedrons that are also accepted by CGAL..
// All triangle edges are sorted by their atan2 and only edges with a simmilar atan2
// value are compared. This speeds up this code block dramatically (compared to the
// n^2 compares that are neccessary in the trivial implementation).
#if 1
bool added_triangles = true;
typedef QPair<int,int> QPair_ii;
QHash<int, QPair_ii> tri_by_atan2;
for (int i = 0; i < tess_tri.count(); i++)
for (int j = 0; j < 3; j++) {
int ai = (int)round(atan2(fabs(tess_tri[i].p[(j+1)%3][0] - tess_tri[i].p[j][0]),
fabs(tess_tri[i].p[(j+1)%3][1] - tess_tri[i].p[j][1])) / 0.001);
tri_by_atan2.insertMulti(ai, QPair<int,int>(i, j));
}
while (added_triangles)
{
added_triangles = false;
#ifdef DEBUG_TRIANGLE_SPLITTING
printf("*** Triangle splitting (%d) ***\n", tess_tri.count()+1);
#endif
for (int i = 0; i < tess_tri.count(); i++)
for (int k = 0; k < 3; k++)
{
QHash<QPair_ii, QPair_ii> possible_neigh;
int ai = (int)floor(atan2(fabs(tess_tri[i].p[(k+1)%3][0] - tess_tri[i].p[k][0]),
fabs(tess_tri[i].p[(k+1)%3][1] - tess_tri[i].p[k][1])) / 0.001 - 0.5);
for (int j = 0; j < 2; j++) {
foreach (QPair_ii jl, tri_by_atan2.values(ai+j))
if (i != jl.first)
possible_neigh[jl] = jl;
}
#ifdef DEBUG_TRIANGLE_SPLITTING
printf("%d/%d: %d\n", i, k, possible_neigh.count());
#endif
foreach (QPair_ii jl, possible_neigh) {
int j = jl.first;
for (int l = jl.second; l != (jl.second + 2) % 3; l = (l + 1) % 3)
if (point_on_line(tess_tri[i].p[k], tess_tri[j].p[l], tess_tri[i].p[(k+1)%3])) {
#ifdef DEBUG_TRIANGLE_SPLITTING
printf("%% %f %f %f %f %f %f [%d %d]\n",
tess_tri[i].p[k][0], tess_tri[i].p[k][1],
tess_tri[j].p[l][0], tess_tri[j].p[l][1],
tess_tri[i].p[(k+1)%3][0], tess_tri[i].p[(k+1)%3][1],
i, j);
#endif
tess_tri.append(tess_triangle(tess_tri[j].p[l],
tess_tri[i].p[(k+1)%3], tess_tri[i].p[(k+2)%3]));
for (int m = 0; m < 2; m++) {
int ai = (int)round(atan2(fabs(tess_tri.last().p[(m+1)%3][0] - tess_tri.last().p[m][0]),
fabs(tess_tri.last().p[(m+1)%3][1] - tess_tri.last().p[m][1])) / 0.001 );
tri_by_atan2.insertMulti(ai, QPair<int,int>(tess_tri.count()-1, m));
}
tess_tri[i].p[(k+1)%3] = tess_tri[j].p[l];
for (int m = 0; m < 2; m++) {
int ai = (int)round(atan2(fabs(tess_tri[i].p[(m+1)%3][0] - tess_tri[i].p[m][0]),
fabs(tess_tri[i].p[(m+1)%3][1] - tess_tri[i].p[m][1])) / 0.001 );
tri_by_atan2.insertMulti(ai, QPair<int,int>(i, m));
}
added_triangles = true;
}
}
}
}
#endif
for (int i = 0; i < tess_tri.count(); i++)
{
#if 0
printf("---\n");
printf(" %f %f %f\n", tess_tri[i].p[0][0], tess_tri[i].p[0][1], tess_tri[i].p[0][2]);
printf(" %f %f %f\n", tess_tri[i].p[1][0], tess_tri[i].p[1][1], tess_tri[i].p[1][2]);
printf(" %f %f %f\n", tess_tri[i].p[2][0], tess_tri[i].p[2][1], tess_tri[i].p[2][2]);
#endif
double x, y;
ps->append_poly();
x = tess_tri[i].p[0][0] * cos(rot*M_PI/180) + tess_tri[i].p[0][1] * sin(rot*M_PI/180);
y = tess_tri[i].p[0][0] * -sin(rot*M_PI/180) + tess_tri[i].p[0][1] * cos(rot*M_PI/180);
ps->insert_vertex(x, y, tess_tri[i].p[0][2]);
x = tess_tri[i].p[1][0] * cos(rot*M_PI/180) + tess_tri[i].p[1][1] * sin(rot*M_PI/180);
y = tess_tri[i].p[1][0] * -sin(rot*M_PI/180) + tess_tri[i].p[1][1] * cos(rot*M_PI/180);
ps->insert_vertex(x, y, tess_tri[i].p[1][2]);
x = tess_tri[i].p[2][0] * cos(rot*M_PI/180) + tess_tri[i].p[2][1] * sin(rot*M_PI/180);
y = tess_tri[i].p[2][0] * -sin(rot*M_PI/180) + tess_tri[i].p[2][1] * cos(rot*M_PI/180);
ps->insert_vertex(x, y, tess_tri[i].p[2][2]);
int i0 = point_to_path.data(tess_tri[i].p[0][0], tess_tri[i].p[0][1], tess_tri[i].p[0][2]).first;
int j0 = point_to_path.data(tess_tri[i].p[0][0], tess_tri[i].p[0][1], tess_tri[i].p[0][2]).second;
int i1 = point_to_path.data(tess_tri[i].p[1][0], tess_tri[i].p[1][1], tess_tri[i].p[1][2]).first;
int j1 = point_to_path.data(tess_tri[i].p[1][0], tess_tri[i].p[1][1], tess_tri[i].p[1][2]).second;
int i2 = point_to_path.data(tess_tri[i].p[2][0], tess_tri[i].p[2][1], tess_tri[i].p[2][2]).first;
int j2 = point_to_path.data(tess_tri[i].p[2][0], tess_tri[i].p[2][1], tess_tri[i].p[2][2]).second;
if (i0 == i1 && j0 == 1 && j1 == 2)
dxf->paths[i0].is_inner = !up;
if (i0 == i1 && j0 == 2 && j1 == 1)
dxf->paths[i0].is_inner = up;
if (i1 == i2 && j1 == 1 && j2 == 2)
dxf->paths[i1].is_inner = !up;
if (i1 == i2 && j1 == 2 && j2 == 1)
dxf->paths[i1].is_inner = up;
if (i2 == i0 && j2 == 1 && j0 == 2)
dxf->paths[i2].is_inner = !up;
if (i2 == i0 && j2 == 2 && j0 == 1)
dxf->paths[i2].is_inner = up;
}
tess_tri.clear();
}
|