#include "printutils.h" #include "dxftess.h" #include "dxfdata.h" #include "polyset.h" #include "grid.h" #include "cgal.h" #ifdef NDEBUG #define PREV_NDEBUG NDEBUG #undef NDEBUG #endif #include #include #include #include #include #include #include #ifdef PREV_NDEBUG #define NDEBUG PREV_NDEBUG #endif typedef CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL::Triangulation_vertex_base_2 Vb; typedef CGAL::Delaunay_mesh_face_base_2 Fb; typedef CGAL::Triangulation_data_structure_2 Tds; typedef CGAL::Constrained_Delaunay_triangulation_2 CDT; //typedef CGAL::Delaunay_mesh_criteria_2 Criteria; typedef CDT::Vertex_handle Vertex_handle; typedef CDT::Point CDTPoint; #include template class DummyCriteria { public: typedef double Quality; class Is_bad { public: CGAL::Mesh_2::Face_badness operator()(const Quality) const { return CGAL::Mesh_2::NOT_BAD; } CGAL::Mesh_2::Face_badness operator()(const typename T::Face_handle&, Quality&q) const { q = 1; return CGAL::Mesh_2::NOT_BAD; } }; Is_bad is_bad_object() const { return Is_bad(); } }; struct triangle { struct { double x, y; } p[3]; bool is_inner, is_marked; }; struct point_info_t { double x, y; int pathidx, pointidx; int max_pointidx_in_path; std::vector triangles; struct point_info_t *neigh_next; struct point_info_t *neigh_prev; point_info_t(double x, double y, int a, int b, int c) : x(x), y(y), pathidx(a), pointidx(b), max_pointidx_in_path(c) { } point_info_t() : x(0), y(0), pathidx(-1), pointidx(-1), max_pointidx_in_path(-1) { } }; typedef std::pair edge_t; void mark_inner_outer(std::vector &tri, Grid2d &point_info, boost::unordered_map &edge_to_triangle, boost::unordered_map &edge_to_path, int idx, bool inner) { if (tri[idx].is_marked) return; tri[idx].is_inner = inner; tri[idx].is_marked = true; point_info_t *p[3] = { &point_info.data(tri[idx].p[0].x, tri[idx].p[0].y), &point_info.data(tri[idx].p[1].x, tri[idx].p[1].y), &point_info.data(tri[idx].p[2].x, tri[idx].p[2].y) }; edge_t edges[3] = { edge_t(p[1], p[0]), edge_t(p[2], p[1]), edge_t(p[0], p[2]) }; for (int i = 0; i < 3; i++) { if (edge_to_triangle.find(edges[i]) != edge_to_triangle.end()) { bool next_inner = (edge_to_path.find(edges[i]) != edge_to_path.end()) ? !inner : inner; mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, edge_to_triangle[edges[i]], next_inner); } } } void dxf_tesselate(PolySet *ps, DxfData &dxf, double rot, Vector2d scale, bool up, bool /* do_triangle_splitting */, double h) { CDT cdt; std::vector tri; Grid2d point_info(GRID_FINE); boost::unordered_map edge_to_triangle; boost::unordered_map edge_to_path; int duplicate_vertices = 0; CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION); try { // read path data and copy all relevant infos for (size_t i = 0; i < dxf.paths.size(); i++) { if (!dxf.paths[i].is_closed) continue; Vertex_handle first, prev; struct point_info_t *first_pi = NULL, *prev_pi = NULL; for (size_t j = 1; j < dxf.paths[i].indices.size(); j++) { double x = dxf.points[dxf.paths[i].indices[j]][0]; double y = dxf.points[dxf.paths[i].indices[j]][1]; if (point_info.has(x, y)) { // FIXME: How can the same path set contain the same point twice? // ..maybe it would be better to assert here. But this would // break compatibility with the glu tesselator that handled such // cases just fine. duplicate_vertices++; continue; } struct point_info_t *pi = &point_info.align(x, y); *pi = point_info_t(x, y, i, j, dxf.paths[i].indices.size()-1); Vertex_handle vh = cdt.insert(CDTPoint(x, y)); if (first_pi == NULL) { first_pi = pi; first = vh; } else { prev_pi->neigh_next = pi; pi->neigh_prev = prev_pi; edge_to_path[edge_t(prev_pi, pi)] = 1; edge_to_path[edge_t(pi, prev_pi)] = 1; cdt.insert_constraint(prev, vh); } prev_pi = pi; prev = vh; } if (first_pi != NULL && first_pi != prev_pi) { prev_pi->neigh_next = first_pi; first_pi->neigh_prev = prev_pi; edge_to_path[edge_t(first_pi, prev_pi)] = 1; edge_to_path[edge_t(prev_pi, first_pi)] = 1; cdt.insert_constraint(prev, first); } } if ( duplicate_vertices > 0 ) { PRINT( "WARNING: Duplicate vertices and/or intersecting lines found during DXF Tessellation." ); PRINT( "WARNING: Modify the polygon to be a Simple Polygon. Render is incomplete." ); } } catch (const CGAL::Assertion_exception &e) { PRINTB("CGAL error in dxf_tesselate(): %s", e.what()); CGAL::set_error_behaviour(old_behaviour); return; } CGAL::set_error_behaviour(old_behaviour); // run delaunay triangulation std::list list_of_seeds; CGAL::refine_Delaunay_mesh_2_without_edge_refinement(cdt, list_of_seeds.begin(), list_of_seeds.end(), DummyCriteria()); // copy triangulation results CDT::Finite_faces_iterator iter = cdt.finite_faces_begin(); for(; iter != cdt.finite_faces_end(); ++iter) { if (!iter->is_in_domain()) continue; int idx = tri.size(); tri.push_back(triangle()); point_info_t *pi[3]; for (int i=0; i<3; i++) { double px = iter->vertex(i)->point()[0]; double py = iter->vertex(i)->point()[1]; pi[i] = &point_info.align(px, py); pi[i]->triangles.push_back(idx); tri[idx].p[i].x = px; tri[idx].p[i].y = py; } edge_to_triangle[edge_t(pi[0], pi[1])] = idx; edge_to_triangle[edge_t(pi[1], pi[2])] = idx; edge_to_triangle[edge_t(pi[2], pi[0])] = idx; } // mark trianlges as inner/outer while (1) { double far_left_x = 0; struct point_info_t *far_left_p = NULL; for (size_t i = 0; i < tri.size(); i++) { if (tri[i].is_marked) continue; for (int j = 0; j < 3; j++) { double x = tri[i].p[j].x; double y = tri[i].p[j].y; if (far_left_p == NULL || x < far_left_x) { far_left_x = x; far_left_p = &point_info.data(x, y); } } } if (far_left_p == NULL) break; // find one inner triangle and run recursive marking for (size_t i = 0; i < far_left_p->triangles.size(); i++) { int idx = far_left_p->triangles[i]; if (tri[idx].is_marked) continue; point_info_t *p0 = &point_info.data(tri[idx].p[0].x, tri[idx].p[0].y); point_info_t *p1 = &point_info.data(tri[idx].p[1].x, tri[idx].p[1].y); point_info_t *p2 = &point_info.data(tri[idx].p[2].x, tri[idx].p[2].y); point_info_t *mp = NULL, *np1 = NULL, *np2 = NULL, *tp = NULL; if (p0 == far_left_p) mp = p0, np1 = p1, np2 = p2; else if (p1 == far_left_p) mp = p1, np1 = p0, np2 = p2; else if (p2 == far_left_p) mp = p2, np1 = p0, np2 = p1; else continue; if (mp->neigh_next == np2 || mp->neigh_prev == np1) { point_info_t *t = np1; np1 = np2; np2 = t; } if (mp->neigh_next == np1 && mp->neigh_prev == np2) { mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true); goto found_and_marked_inner; } if (mp->neigh_next == np1) tp = np2; if (mp->neigh_prev == np2) tp = np1; if (tp != NULL) { double z0 = (mp->neigh_next->x - mp->x) * (mp->neigh_prev->y - mp->y) - (mp->neigh_prev->x - mp->x) * (mp->neigh_next->y - mp->y); double z1 = (mp->neigh_next->x - mp->x) * (tp->y - mp->y) - (tp->x - mp->x) * (mp->neigh_next->y - mp->y); double z2 = (tp->x - mp->x) * (mp->neigh_prev->y - mp->y) - (mp->neigh_prev->x - mp->x) * (tp->y - mp->y); if ((z0 < 0 && z1 < 0 && z2 < 0) || (z0 > 0 && z1 > 0 && z2 > 0)) { mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true); goto found_and_marked_inner; } } } // far left point is in the middle of a vertical segment // -> it is ok to use any unmarked triangle connected to this point for (size_t i = 0; i < far_left_p->triangles.size(); i++) { int idx = far_left_p->triangles[i]; if (tri[idx].is_marked) continue; mark_inner_outer(tri, point_info, edge_to_triangle, edge_to_path, idx, true); break; } found_and_marked_inner:; } // add all inner triangles to target polyset for(size_t i = 0; i < tri.size(); i++) { if (!tri[i].is_inner) continue; ps->append_poly(); int path[3], point[3]; for (int j=0;j<3;j++) { int idx = up ? j : (2-j); double px = tri[i].p[idx].x; double py = tri[i].p[idx].y; ps->append_vertex(scale[0] * (px * cos(rot*M_PI/180) + py * sin(rot*M_PI/180)), scale[1] * (px * -sin(rot*M_PI/180) + py * cos(rot*M_PI/180)), h); path[j] = point_info.data(px, py).pathidx; point[j] = point_info.data(px, py).pointidx; } if (path[0] == path[1] && point[0] == 1 && point[1] == 2) dxf.paths[path[0]].is_inner = up; if (path[0] == path[1] && point[0] == 2 && point[1] == 1) dxf.paths[path[0]].is_inner = !up; if (path[1] == path[2] && point[1] == 1 && point[2] == 2) dxf.paths[path[1]].is_inner = up; if (path[1] == path[2] && point[1] == 2 && point[2] == 1) dxf.paths[path[1]].is_inner = !up; if (path[2] == path[0] && point[2] == 1 && point[0] == 2) dxf.paths[path[2]].is_inner = up; if (path[2] == path[0] && point[2] == 2 && point[0] == 1) dxf.paths[path[2]].is_inner = !up; } } /* Tessellation of 3d PolySet faces This code is for tessellating the faces of a 3d PolySet, assuming that the faces are near-planar polygons. We do the tessellation by projecting each polygon of the Polyset onto a 2-d plane, then running a 2d tessellation algorithm on the projected 2d polygon. Then we project each of the newly generated 2d 'tiles' (the polygons used for tessellation, typically triangles) back up into 3d space. (in reality as of writing, we dont need to do a back-projection from 2d->3d because the algorithm we are using doesn't create any new points, and we can just use a 'map' to associate 3d points with 2d points). The code assumes the input polygons are simple, non-intersecting, without holes, without duplicate input points, and with proper orientation. The purpose of this code is originally to fix github issue 349. Our CGAL kernel does not accept polygons for Nef_Polyhedron_3 if each of the points is not exactly coplanar. "Near-planar" or "Almost planar" polygons often occur due to rounding issues on, for example, polyhedron() input. By tessellating the 3d polygon into individual smaller tiles that are perfectly coplanar (triangles, for example), we can get CGAL to accept the polyhedron() input. */ typedef enum { XYPLANE, YZPLANE, XZPLANE, NONE } projection_t; // this is how we make 3d points appear as though they were 2d points to //the tessellation algorithm. Vector2d get_projected_point( Vector3d v, projection_t projection ) { Vector2d v2(0,0); if (projection==XYPLANE) { v2.x() = v.x(); v2.y() = v.y(); } else if (projection==XZPLANE) { v2.x() = v.x(); v2.y() = v.z(); } else if (projection==YZPLANE) { v2.x() = v.y(); v2.y() = v.z(); } return v2; } CGAL_Point_3 cgp( Vector3d v ) { return CGAL_Point_3( v.x(), v.y(), v.z() ); } /* Find a 'good' 2d projection for a given 3d polygon. the XY, YZ, or XZ plane. This is needed because near-planar polygons in 3d can have 'bad' projections into 2d. For example if the square 0,0,0 0,1,0 0,1,1 0,0,1 is projected onto the XY plane you will not get a polygon, you wil get a skinny line thing. It's better to project that square onto the yz plane.*/ projection_t find_good_projection( PolySet::Polygon pgon ) { // step 1 - find 3 non-collinear points in the input if (pgon.size()<3) return NONE; Vector3d v1,v2,v3; v1 = v2 = v3 = pgon[0]; for (size_t i=0;i pl( cgp(v1), cgp(v2), cgp(v3) ); NT3 qxy = pl.a()*pl.a()+pl.b()*pl.b(); NT3 qyz = pl.b()*pl.b()+pl.c()*pl.c(); NT3 qxz = pl.c()*pl.c()+pl.a()*pl.a(); NT3 min = std::min(qxy,std::min(qyz,qxz)); if (min==qxy) return XYPLANE; else if (min==qyz) return YZPLANE; return XZPLANE; } /* triangulate the given 3d polygon using CGAL's 2d Constrained Delaunay algorithm. Project the polygon's points into 2d using the given projection before performing the triangulation. This code assumes input polygon is simple, no holes, no self-intersections, no duplicate points, and is properly oriented. output is a sequence of 3d triangles. */ bool triangulate_polygon( const PolySet::Polygon &pgon, std::vector &triangles, projection_t projection ) { bool err = false; CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION); try { CDT cdt; std::vector vhandles; std::map vertmap; CGAL::Orientation original_orientation; std::vector orienpgon; for (size_t i = 0; i < pgon.size(); i++) { Vector3d v3 = pgon.at(i); Vector2d v2 = get_projected_point( v3, projection ); CDTPoint cdtpoint = CDTPoint(v2.x(),v2.y()); vertmap[ cdtpoint ] = v3; Vertex_handle vh = cdt.insert( cdtpoint ); vhandles.push_back(vh); orienpgon.push_back( cdtpoint ); } original_orientation = CGAL::orientation_2( orienpgon.begin(),orienpgon.end() ); for (size_t i = 0; i < vhandles.size(); i++ ) { int vindex1 = (i+0); int vindex2 = (i+1)%vhandles.size(); cdt.insert_constraint( vhandles[vindex1], vhandles[vindex2] ); } std::list list_of_seeds; CGAL::refine_Delaunay_mesh_2_without_edge_refinement(cdt, list_of_seeds.begin(), list_of_seeds.end(), DummyCriteria()); CDT::Finite_faces_iterator fit; for( fit=cdt.finite_faces_begin(); fit!=cdt.finite_faces_end(); fit++ ) { if(fit->is_in_domain()) { CDTPoint p1 = cdt.triangle( fit )[0]; CDTPoint p2 = cdt.triangle( fit )[1]; CDTPoint p3 = cdt.triangle( fit )[2]; Vector3d v1 = vertmap[p1]; Vector3d v2 = vertmap[p2]; Vector3d v3 = vertmap[p3]; PolySet::Polygon pgon; if (CGAL::orientation(p1,p2,p3)==original_orientation) { pgon.push_back(v1); pgon.push_back(v2); pgon.push_back(v3); } else { pgon.push_back(v3); pgon.push_back(v2); pgon.push_back(v1); } triangles.push_back( pgon ); } } } catch (const CGAL::Failure_exception &e) { PRINTB("CGAL error in dxftess triangulate_polygon: %s", e.what()); err = true; } CGAL::set_error_behaviour(old_behaviour); return err; } /* Given a 3d PolySet with 'near planar' polygonal faces, Tessellate the faces. As of writing, our only tessellation method is Triangulation using CGAL's Constrained Delaunay algorithm. This code assumes the input polyset has simple polygon faces with no holes, no self intersections, no duplicate points, and proper orientation. */ void tessellate_3d_faces( const PolySet &inps, PolySet &outps ) { for (size_t i = 0; i < inps.polygons.size(); i++) { const PolySet::Polygon pgon = inps.polygons[i]; if (pgon.size()<3) { PRINT("WARNING: PolySet has polygon with <3 points"); continue; } projection_t goodproj = find_good_projection( pgon ); if (goodproj==NONE) { PRINT("WARNING: PolySet has degenerate polygon"); continue; } std::vector triangles; bool err = triangulate_polygon( pgon, triangles, goodproj ); if (!err) for (size_t j=0;j