#include "csgtermnormalizer.h" #include "csgterm.h" #include "printutils.h" /*! NB! for e.g. empty intersections, this can normalize a tree to nothing and return NULL. */ shared_ptr CSGTermNormalizer::normalize(const shared_ptr &root) { this->aborted = false; shared_ptr temp = root; while (1) { this->rootnode = temp; this->nodecount = 0; shared_ptr n = normalizePass(temp); if (!n) return n; // If normalized to nothing if (temp == n) break; temp = n; if (this->nodecount > this->limit) { PRINTB("WARNING: Normalized tree is growing past %d elements. Aborting normalization.\n", this->limit); // Clean up any partially evaluated terms shared_ptr newroot = root, tmproot; while (newroot && newroot != tmproot) { tmproot = newroot; newroot = collapse_null_terms(tmproot); } return newroot; } } this->rootnode.reset(); return temp; } /*! After aborting, a subtree might have become invalidated (NULL child term) since terms can be instantiated multiple times. This will search for NULL children an recursively repair the corresponding subtree. */ shared_ptr CSGTermNormalizer::cleanup_term(shared_ptr &t) { if (t->type != CSGTerm::TYPE_PRIMITIVE) { if (t->left) t->left = cleanup_term(t->left); if (t->right) t->right = cleanup_term(t->right); return collapse_null_terms(t); } else return t; } shared_ptr CSGTermNormalizer::normalizePass(shared_ptr term) { // This function implements the CSG normalization // Reference: // Goldfeather, J., Molnar, S., Turk, G., and Fuchs, H. Near // Realtime CSG Rendering Using Tree Normalization and Geometric // Pruning. IEEE Computer Graphics and Applications, 9(3):20-28, // 1989. // http://www.cc.gatech.edu/~turk/my_papers/pxpl_csg.pdf if (term->type == CSGTerm::TYPE_PRIMITIVE) { return term; } do { while (term && match_and_replace(term)) { } this->nodecount++; if (nodecount > this->limit) { PRINTB("WARNING: Normalized tree is growing past %d elements. Aborting normalization.\n", this->limit); this->aborted = true; return shared_ptr(); } if (!term || term->type == CSGTerm::TYPE_PRIMITIVE) return term; if (term->left) term->left = normalizePass(term->left); } while (!this->aborted && term->type != CSGTerm::TYPE_UNION && ((term->right && term->right->type != CSGTerm::TYPE_PRIMITIVE) || (term->left && term->left->type == CSGTerm::TYPE_UNION))); if (!this->aborted) term->right = normalizePass(term->right); // FIXME: Do we need to take into account any transformation of item here? shared_ptr t = collapse_null_terms(term); if (this->aborted) { if (t) t = cleanup_term(t); } return t; } shared_ptr CSGTermNormalizer::collapse_null_terms(const shared_ptr &term) { if (!term->right) { if (term->type == CSGTerm::TYPE_UNION || term->type == CSGTerm::TYPE_DIFFERENCE) return term->left; else return term->right; } if (!term->left) { if (term->type == CSGTerm::TYPE_UNION) return term->right; else return term->left; } return term; } bool CSGTermNormalizer::match_and_replace(shared_ptr &term) { if (term->type == CSGTerm::TYPE_UNION || term->type == CSGTerm::TYPE_PRIMITIVE) { return false; } // Part A: The 'x . (y . z)' expressions shared_ptr x = term->left; shared_ptr y = term->right->left; shared_ptr z = term->right->right; shared_ptr result = term; // 1. x - (y + z) -> (x - y) - z if (term->type == CSGTerm::TYPE_DIFFERENCE && term->right->type == CSGTerm::TYPE_UNION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, x, y), z); return true; } // 2. x * (y + z) -> (x * y) + (x * z) else if (term->type == CSGTerm::TYPE_INTERSECTION && term->right->type == CSGTerm::TYPE_UNION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_UNION, CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, y), CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, z)); return true; } // 3. x - (y * z) -> (x - y) + (x - z) else if (term->type == CSGTerm::TYPE_DIFFERENCE && term->right->type == CSGTerm::TYPE_INTERSECTION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_UNION, CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, x, y), CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, x, z)); return true; } // 4. x * (y * z) -> (x * y) * z else if (term->type == CSGTerm::TYPE_INTERSECTION && term->right->type == CSGTerm::TYPE_INTERSECTION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, y), z); return true; } // 5. x - (y - z) -> (x - y) + (x * z) else if (term->type == CSGTerm::TYPE_DIFFERENCE && term->right->type == CSGTerm::TYPE_DIFFERENCE) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_UNION, CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, x, y), CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, z)); return true; } // 6. x * (y - z) -> (x * y) - z else if (term->type == CSGTerm::TYPE_INTERSECTION && term->right->type == CSGTerm::TYPE_DIFFERENCE) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, y), z); return true; } // Part B: The '(x . y) . z' expressions x = term->left->left; y = term->left->right; z = term->right; // 7. (x - y) * z -> (x * z) - y if (term->left->type == CSGTerm::TYPE_DIFFERENCE && term->type == CSGTerm::TYPE_INTERSECTION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, z), y); return true; } // 8. (x + y) - z -> (x - z) + (y - z) else if (term->left->type == CSGTerm::TYPE_UNION && term->type == CSGTerm::TYPE_DIFFERENCE) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_UNION, CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, x, z), CSGTerm::createCSGTerm(CSGTerm::TYPE_DIFFERENCE, y, z)); return true; } // 9. (x + y) * z -> (x * z) + (y * z) else if (term->left->type == CSGTerm::TYPE_UNION && term->type == CSGTerm::TYPE_INTERSECTION) { term = CSGTerm::createCSGTerm(CSGTerm::TYPE_UNION, CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, x, z), CSGTerm::createCSGTerm(CSGTerm::TYPE_INTERSECTION, y, z)); return true; } return false; } // Counts all non-leaf nodes unsigned int CSGTermNormalizer::count(const shared_ptr &term) const { if (!term) return 0; return term->type == CSGTerm::TYPE_PRIMITIVE ? 0 : 1 + count(term->left) + count(term->right); }