/* * OpenSCAD (www.openscad.org) * Copyright (C) 2009-2011 Clifford Wolf and * Marius Kintel * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * As a special exception, you have permission to link this program * with the CGAL library and distribute executables, as long as you * follow the requirements of the GNU GPL in regard to all of the * software in the executable aside from CGAL. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "module.h" #include "node.h" #include "evalcontext.h" #include "modcontext.h" #include "builtin.h" #include "printutils.h" #include enum control_type_e { CHILD, ECHO, ASSIGN, FOR, INT_FOR, IF }; class ControlModule : public AbstractModule { public: control_type_e type; ControlModule(control_type_e type) : type(type) { } virtual AbstractNode *evaluate(const Context *ctx, const ModuleInstantiation *inst, const EvalContext *evalctx) const; }; void for_eval(AbstractNode &node, const ModuleInstantiation &inst, size_t l, const Context *ctx, const EvalContext *evalctx) { if (evalctx->eval_arguments.size() > l) { const std::string &it_name = evalctx->eval_arguments[l].first; const Value &it_values = evalctx->eval_arguments[l].second; Context c(ctx); if (it_values.type() == Value::RANGE) { Value::RangeType range = it_values.toRange(); if (range.end < range.begin) { double t = range.begin; range.begin = range.end; range.end = t; } if (range.step > 0 && (range.begin-range.end)/range.step < 10000) { for (double i = range.begin; i <= range.end; i += range.step) { c.set_variable(it_name, Value(i)); for_eval(node, inst, l+1, &c, evalctx); } } } else if (it_values.type() == Value::VECTOR) { for (size_t i = 0; i < it_values.toVector().size(); i++) { c.set_variable(it_name, it_values.toVector()[i]); for_eval(node, inst, l+1, &c, evalctx); } } else if (it_values.type() != Value::UNDEFINED) { c.set_variable(it_name, it_values); for_eval(node, inst, l+1, &c, evalctx); } } else if (l > 0) { std::vector evaluatednodes = inst.evaluateChildren(ctx); node.children.insert(node.children.end(), evaluatednodes.begin(), evaluatednodes.end()); } } AbstractNode *ControlModule::evaluate(const Context *ctx, const ModuleInstantiation *inst, const EvalContext *evalctx) const { AbstractNode *node = NULL; if (type == CHILD) { int n = 0; if (evalctx->eval_arguments.size() > 0) { double v; if (evalctx->eval_arguments[0].second.getDouble(v)) { n = trunc(v); if (n < 0) { PRINTB("WARNING: Negative child index (%d) not allowed", n); return NULL; // Disallow negative child indices } } } // Find the last custom module invocation, which will contain // an eval context with the children of the module invokation const Context *tmpc = evalctx; while (tmpc->parent) { const ModuleContext *filectx = dynamic_cast(tmpc->parent); if (filectx) { // This will trigger if trying to invoke child from the root of any file // assert(filectx->evalctx); if (filectx->evalctx) { if (n < filectx->evalctx->children.size()) { node = filectx->evalctx->children[n]->evaluate_instance(filectx->evalctx); } else { // How to deal with negative objects in this case? // (e.g. first child of difference is invalid) PRINTB("WARNING: Child index (%d) out of bounds (%d children)", n % filectx->evalctx->children.size()); } } return node; } tmpc = tmpc->parent; } return node; } if (type == INT_FOR) node = new AbstractIntersectionNode(inst); else node = new AbstractNode(inst); if (type == ECHO) { std::stringstream msg; msg << "ECHO: "; for (size_t i = 0; i < inst->argnames.size(); i++) { if (i > 0) msg << ", "; if (!evalctx->eval_arguments[i].first.empty()) msg << evalctx->eval_arguments[i].first << " = "; msg << evalctx->eval_arguments[i].second; } PRINTB("%s", msg.str()); } if (type == ASSIGN) { Context c(evalctx); for (size_t i = 0; i < evalctx->eval_arguments.size(); i++) { if (!evalctx->eval_arguments[i].first.empty()) c.set_variable(evalctx->eval_arguments[i].first, evalctx->eval_arguments[i].second); } std::vector evaluatednodes = inst->evaluateChildren(&c); node->children.insert(node->children.end(), evaluatednodes.begin(), evaluatednodes.end()); } if (type == FOR || type == INT_FOR) { for_eval(*node, *inst, 0, evalctx, evalctx); } if (type == IF) { const IfElseModuleInstantiation *ifelse = dynamic_cast(inst); if (evalctx->eval_arguments.size() > 0 && evalctx->eval_arguments[0].second.toBool()) { std::vector evaluatednodes = ifelse->evaluateChildren(evalctx); node->children.insert(node->children.end(), evaluatednodes.begin(), evaluatednodes.end()); } else { std::vector evaluatednodes = ifelse->evaluateElseChildren(evalctx); node->children.insert(node->children.end(), evaluatednodes.begin(), evaluatednodes.end()); } } return node; } void register_builtin_control() { Builtins::init("child", new ControlModule(CHILD)); Builtins::init("echo", new ControlModule(ECHO)); Builtins::init("assign", new ControlModule(ASSIGN)); Builtins::init("for", new ControlModule(FOR)); Builtins::init("intersection_for", new ControlModule(INT_FOR)); Builtins::init("if", new ControlModule(IF)); }