diff options
Diffstat (limited to 'src/dxftess-cgal.cc')
-rw-r--r-- | src/dxftess-cgal.cc | 175 |
1 files changed, 175 insertions, 0 deletions
diff --git a/src/dxftess-cgal.cc b/src/dxftess-cgal.cc index 16eaf9f..14f1204 100644 --- a/src/dxftess-cgal.cc +++ b/src/dxftess-cgal.cc @@ -335,3 +335,178 @@ void dxf_tesselate(PolySet *ps, DxfData &dxf, double rot, Vector2d scale, bool u dxf.paths[path[2]].is_inner = !up; } } + + +/* Tessellation of 3d PolySet faces + +This code is for tessellating the faces of a 3d PolySet, assuming that +the faces are near-planar polygons. + +We do the tessellation by projecting each polygon of the Polyset onto a +2-d plane, then running a 2d tessellation algorithm on the projected 2d +polygon. Then we project each of the newly generated 2d 'tiles' (the +polygons used for tessellation, typically triangles) back up into 3d +space. + +(in reality as of writing, we dont need to do a back-projection from 2d->3d +because the algorithm we are using doesn't create any new points, and we can +just use a 'map' to associate 3d points with 2d points). + +The code assumes the input polygons are simple, non-intersecting, without +holes, without duplicate input points, and with proper orientation. + +The purpose of this code is originally to fix github issue 349. Our CGAL +kernel does not accept polygons for Nef_Polyhedron_3 if each of the +points is not exactly coplanar. "Near-planar" or "Almost planar" polygons +often occur due to rounding issues on, for example, polyhedron() input. +By tessellating the 3d polygon into individual smaller tiles that +are perfectly coplanar (triangles, for example), we can get CGAL to accept +the polyhedron() input. +*/ + +typedef enum { XYPLANE, YZPLANE, XZPLANE, NONE } projection_t; + +// this is how we make 3d points appear as though they were 2d points to +//the tessellation algorithm. +Vector2d get_projected_point( Vector3d v, projection_t projection ) { + Vector2d v2(0,0); + if (projection==XYPLANE) { v2.x() = v.x(); v2.y() = v.y(); } + else if (projection==XZPLANE) { v2.x() = v.x(); v2.y() = v.z(); } + else if (projection==YZPLANE) { v2.x() = v.y(); v2.y() = v.z(); } + return v2; +} + +CGAL_Point_3 cgp( Vector3d v ) { return CGAL_Point_3( v.x(), v.y(), v.z() ); } + +/* Find a 'good' 2d projection for a given 3d polygon. the XY, YZ, or XZ +plane. This is needed because near-planar polygons in 3d can have 'bad' +projections into 2d. For example if the square 0,0,0 0,1,0 0,1,1 0,0,1 +is projected onto the XY plane you will not get a polygon, you wil get +a skinny line thing. It's better to project that square onto the yz +plane.*/ +projection_t find_good_projection( PolySet::Polygon pgon ) { + // step 1 - find 3 non-collinear points in the input + if (pgon.size()<3) return NONE; + Vector3d v1,v2,v3; + v1 = v2 = v3 = pgon[0]; + for (size_t i=0;i<pgon.size();i++) { + if (pgon[i]!=v1) { v2=pgon[i]; break; } + } + if (v1==v2) return NONE; + for (size_t i=0;i<pgon.size();i++) { + if (!CGAL::collinear( cgp(v1), cgp(v2), cgp(pgon[i]) )) { + v3=pgon[i]; break; + } + } + if (CGAL::collinear( cgp(v1), cgp(v2), cgp(v3) ) ) return NONE; + // step 2 - find which direction is best for projection. planes use + // the equation ax+by+cz+d = 0. a,b, and c determine the direction the + // plane is in. we want to find which projection of the 'normal vector' + // would make the smallest shadow if projected onto the XY, YZ, or XZ + // plane. 'quadrance' (distance squared) can tell this w/o using sqrt. + CGAL::Plane_3<CGAL_Kernel3> pl( cgp(v1), cgp(v2), cgp(v3) ); + NT3 qxy = pl.a()*pl.a()+pl.b()*pl.b(); + NT3 qyz = pl.b()*pl.b()+pl.c()*pl.c(); + NT3 qxz = pl.c()*pl.c()+pl.a()*pl.a(); + NT3 min = std::min(qxy,std::min(qyz,qxz)); + if (min==qxy) return XYPLANE; + else if (min==qyz) return YZPLANE; + return XZPLANE; +} + +/* triangulate the given 3d polygon using CGAL's 2d Constrained Delaunay +algorithm. Project the polygon's points into 2d using the given projection +before performing the triangulation. This code assumes input polygon is +simple, no holes, no self-intersections, no duplicate points, and is +properly oriented. output is a sequence of 3d triangles. */ +bool triangulate_polygon( const PolySet::Polygon &pgon, std::vector<PolySet::Polygon> &triangles, projection_t projection ) +{ + bool err = false; + CGAL::Failure_behaviour old_behaviour = CGAL::set_error_behaviour(CGAL::THROW_EXCEPTION); + try { + CDT cdt; + std::vector<Vertex_handle> vhandles; + std::map<CDTPoint,Vector3d> vertmap; + CGAL::Orientation original_orientation; + std::vector<CDTPoint> orienpgon; + for (size_t i = 0; i < pgon.size(); i++) { + Vector3d v3 = pgon.at(i); + Vector2d v2 = get_projected_point( v3, projection ); + CDTPoint cdtpoint = CDTPoint(v2.x(),v2.y()); + vertmap[ cdtpoint ] = v3; + Vertex_handle vh = cdt.insert( cdtpoint ); + vhandles.push_back(vh); + orienpgon.push_back( cdtpoint ); + } + original_orientation = CGAL::orientation_2( orienpgon.begin(),orienpgon.end() ); + for (size_t i = 0; i < vhandles.size(); i++ ) { + int vindex1 = (i+0); + int vindex2 = (i+1)%vhandles.size(); + cdt.insert_constraint( vhandles[vindex1], vhandles[vindex2] ); + } + std::list<CDTPoint> list_of_seeds; + CGAL::refine_Delaunay_mesh_2_without_edge_refinement(cdt, + list_of_seeds.begin(), list_of_seeds.end(), DummyCriteria<CDT>()); + + CDT::Finite_faces_iterator fit; + for( fit=cdt.finite_faces_begin(); fit!=cdt.finite_faces_end(); fit++ ) + { + if(fit->is_in_domain()) { + CDTPoint p1 = cdt.triangle( fit )[0]; + CDTPoint p2 = cdt.triangle( fit )[1]; + CDTPoint p3 = cdt.triangle( fit )[2]; + Vector3d v1 = vertmap[p1]; + Vector3d v2 = vertmap[p2]; + Vector3d v3 = vertmap[p3]; + PolySet::Polygon pgon; + if (CGAL::orientation(p1,p2,p3)==original_orientation) { + pgon.push_back(v1); + pgon.push_back(v2); + pgon.push_back(v3); + } else { + pgon.push_back(v3); + pgon.push_back(v2); + pgon.push_back(v1); + } + triangles.push_back( pgon ); + } + } + } catch (const CGAL::Assertion_exception &e) { + PRINTB("CGAL error in dxftess triangulate_polygon: %s", e.what()); + err = true; + } + CGAL::set_error_behaviour(old_behaviour); + return err; +} + +/* Given a 3d PolySet with 'near planar' polygonal faces, Tessellate the +faces. As of writing, our only tessellation method is Triangulation +using CGAL's Constrained Delaunay algorithm. This code assumes the input +polyset has simple polygon faces with no holes, no self intersections, no +duplicate points, and proper orientation. */ +void tessellate_3d_faces( const PolySet &inps, PolySet &outps ) { + for (size_t i = 0; i < inps.polygons.size(); i++) { + const PolySet::Polygon pgon = inps.polygons[i]; + if (pgon.size()<3) { + PRINT("WARNING: PolySet has polygon with <3 points"); + continue; + } + projection_t goodproj = find_good_projection( pgon ); + if (goodproj==NONE) { + PRINT("WARNING: PolySet has degenerate polygon"); + continue; + } + std::vector<PolySet::Polygon> triangles; + bool err = triangulate_polygon( pgon, triangles, goodproj ); + if (!err) for (size_t j=0;j<triangles.size();j++) { + PolySet::Polygon t = triangles[j]; + outps.append_poly(); + outps.append_vertex(t[0].x(),t[0].y(),t[0].z()); + outps.append_vertex(t[1].x(),t[1].y(),t[1].z()); + outps.append_vertex(t[2].x(),t[2].y(),t[2].z()); + } + } +} + +// End of PolySet face tessellation code + |