%% load the raw data from synapses output file raw = load('synapse.out'); %% get mean and variance from the 1000 neurons ns = 999; l = floor(length(raw)/ns); raw2 = zeros(l,1); raw2_var = zeros(l,1); for i=1:l, % hint: adapted to read only the first 100 out of 1000 neurons raw2(i,1) = mean(raw((i*ns-ns+1):(i*ns-900), 4), 1); raw2_var(i,1) = var(raw((i*ns-ns+1):(i*ns-900), 4), 1); end %% erase duplicate lines (the silence period of simulation) l2 = floor(l/2) - 1; raw3 = zeros(l2,1); raw3_var = zeros(l2,1); for i=0:l2, raw3(i+1,1) = raw2((2*i+1),1); raw3_var(i+1,1) = raw2_var((2*i+1),1); end %% display graphs nx = 4; nt = 100; res = zeros(nx,nx); k =1; for i=0:(nx-1), for j=0:(nx-1), cur = raw3( ((i*nx + j)*nt + 1):((i*nx + j)*nt + nt - 1), 1); cur_var = raw3_var( ((i*nx + j)*nt + 1):((i*nx + j)*nt + nt - 1), 1); tr = (cur(nt - 1) > 0) + 2 * (sum(cur < 0) > 0); res(i+1,j+1) = tr; %if ((mod(i,5) == 0) && (mod(j,5) == 0)), %if (tr == 2), %if (i<=10 && j>10), subplot(nx, nx, k); k = k + 1; %if (tr == 3), plot( [ 1:0.5:(nt/2) ]', [ cur, zeros(nt-1, 1), cur-cur_var, cur+cur_var ]); title( sprintf('i=%d, j=%d', i, j)); %end; %axis([-1 (nt+1) -1 1]) set(gca,'xtick',0:10:(nt/2)) %set(gca,'ytick',[]) %end; end; end;